Free Novel Read

About Time Page 3


  The Abri Blanchard artefact would sit in a French museum for decades until amateur archaeologist Alexander Marshack chanced upon it. Marshack was a journalist hired by NASA in 1962 to recount the long human journey leading up to the Apollo moon landing programme. In his efforts for NASA, Marshack dug so deeply into the history of astronomy, he found himself at the very dawn of human time. He first became obsessed with the Abri Blanchard bone when he encountered it, as part of his NASA project, in grainy illustrations of forgotten archaeology tracts. Eventually travelling to the imposing Musée des Antiquités Nationales near Paris, he found the small artefact all but ignored in a “musty . . . stone chamber” among “accumulations of Upper Palaeolithic materials, crowded under glass with their aged yellowing labels”.5

  Marshack dedicated years of intense study to the Abri Blanchard bone fragment, rejecting the accepted wisdom that the notched carvings were nothing more than early artistic doodling. He traced over the curved trail of finely etched crescents and circles again and again. Finally he discovered a pattern echoing his own interests and his ongoing studies of the moon’s impact on human life, time and culture. In 1970 he published a closely reasoned and convincing argument that the etchings on the bone fragment were one of the earliest tallies of time’s passage, a two-month record of passing lunar phases.6 Rather than random doodles, the creator of the Abri Blanchard fragment had been marking time in a systematic way, for perhaps the first time ever.

  In caves at other sites across the world, fragments of humanity’s first encounters with time were also found. Sticks with sequential notches, flat stones engraved with periodic engravings—each artefact gave testimony to an increasingly sophisticated temporal awareness.7 It was in those caves, tens of thousands of years ago, that the dawn of time broke in the human mind.8

  Scientists call this era the Palaeolithic—meaning “old stone age”. The origins of human culture (and human time) occurred during the so-called Upper Palaeolithic, from roughly 43,000 to 10,000 BCE.9 All human beings during this period lived as hunter-gatherers and left us no written records of their thoughts (writing would have to wait until around 4000 BCE). Through painstaking analysis and considerable imagination, however, scientists have pieced together the outlines of the Palaeolithic human universe. Using the artefacts found at sites around the world and the narratives of contemporary hunter-gatherers, scientists have gained some understanding of these first modern humans.

  FIGURE 1.2. Artist’s depiction of Palaeolithic dwelling at cave formations in the Dordogne region where the Abri Blanchard bone was discovered.

  The Abri Blanchard bone fragment dates back from twelve thousand to twenty thousand years ago, a time when the planet looked very different from the relatively warm, wet globe we now inhabit.10 It was an era when ice covered much of the northern hemisphere. France, as experienced by the unnamed palaeoastronomer marking the moon at Abri Blanchard, was a realm of polar deserts, tundra and towering glaciers.11 Humans were scarce on the ground, and they struggled to endure the hostile climate. This was not the first time members of the genus Homo had endured climate change of this kind. Ice sheets had come and gone in the past, but something remarkable happened to Homo sapiens during the planet’s last deep freeze that would, in time, alter the face of the planet itself.

  Somehow the depths and deprivations of the last climatic winter drove our ancestors to make revolutionary leaps in behaviour. It was early in this period that human beings began burying their dead. Later they invented art and music. Clothes were soon fashioned by sewing animal pelts together.12 People began to invent systems for counting and, most important, started to codify the passage of time.13 It is in this period that the modern mind—with its penchant for analysis and allegory, concretizing and abstraction—emerged. Compared with earlier eras, the speed with which these radical changes swept through populations is startling and has led scholars to call the Upper Palaeolithic the Big Bang of consciousness.14 Any understanding of the inseparable narratives of cosmic and human time must begin here, with the rapid expansion of consciousness that would one day embrace the very cosmos in which it was born.

  TIME OUT OF MIND: THE ORIGINS OF MODERN CONSCIOUSNESS

  The explicit recognition and representation of nature’s repeating patterns were radical developments in hominid evolution. Thus, to understand the emergence of time in the mind, we must first understand the emergence of mind.

  The hominid species that came before us faced challenges similar to those facing our ancestors. From the fossil record, it appears that the earliest versions of Homo sapiens may have overlapped for a brief time with both Homo erectus and Homo heidelbergensis.15 It is also clear that until a mere fifteen thousand years ago we were in direct competition with a group of hominids who were likely also the descendents of H. heidelbergensis, Homo neanderthalensis—the Neanderthals.16 This overlap with other species, particularly the Neanderthals whose brains were essentially the same relative size as ours, raises a pressing question: what spurred the Big Bang of consciousness in the Palaeolithic era?17

  It wasn’t the environment that woke us up. In the long stretch of time before the Palaeolithic’s cognitive revolution, the same challenges presented themselves over and over. Ice sheets grew and ice sheets retreated. Early hominid species adapted by changing behaviours as the situation demanded. What was lacking, however, was rapid innovation and learning. The toolkit of the human species was impressive compared to that of nonhominid species: the domestication of fire, deliberately shaped stones for cutting and scraping.18 But the pace of innovation in the development of these tools and the mental processes likely used in their development seems positively glacial.

  The basic stone tools our ancestors used 1.5 million years ago look fairly similar to those used by their descendants a million years later. Almost no technological innovation appears over the course of thousands of generations.19 On the other hand, comparing the brute stone scrapers used in 100,000 BCE to the needles, harpoons, arrow points and axes developed in 20,000 BCE is akin to comparing a raft to a nuclear submarine.

  There are many competing theories for the rapid origin of the modern human mind. One of the most fruitful lines of research comes from evolutionary psychologists who, in the 1980s and 1990s, began thinking of the prehistoric mind as a kind of Swiss Army knife. From this perspective the mind is remarkably complex and does many highly specialized tasks that it can only have developed in response to very specific evolutionary pressures. Researchers Leda Cosmides and John Tooby have each argued that, like a Swiss Army knife, the mind has different blades—that is, different cognitive modules.20 Each module adapted in response to specific challenges our hunter-gatherer ancestors faced 100,000 years ago. These modules come with their own data and instruction sets—they are content-rich. A Homo sapien child born fifty thousand years ago (or fifty years ago, for that matter) already had modules for hunting, social interactions, tool building and so on. Thus, each module comes hardwired with a considerable storehouse of data.

  There are compelling arguments supporting this claim. When a tiger leaps towards you from behind a rock, a mind built like a generalized computer sorting through all possible responses may not be the optimal evolutionary setup. A brain built like a Swiss Army knife, however, might very well provide the evolutionary adaptation to keep you alive. Given the notorious speed of hungry tigers, a Swiss Army knife mind with preloaded modules governing tiger recognition and the run-like-hell response would appear, on the face of things, to be a more successful evolutionary strategy.21

  There is also compelling evidence for this type of hardwiring. According to some lines of research, we appear to be born with at least four distinct domains of intuitive knowledge. These content-rich modules govern language, human psychology, biology and physics. In each of these domains there is evidence that humans evolved with an internal guidebook of understanding, a degree of hardwiring imprinted by evolution, to help us deal quickly with communication, social interactions, the
living environment and the behaviour of the material world.

  Experiences of secondary school science lessons may convince many people that they have no intuitive understanding of physics. Psychologist Elizabeth Spelke would disagree. Along with researchers such as Renée Baillargeon and others, Spelke has explored the notion of a preexisting “folk physics” innate to us all. Spelke has shown that even very young children have a clear understanding of the behaviour of physical objects.22 Though children’s lives are built around (and depend on) interactions with other people, they can clearly distinguish the properties of people, other living things and inanimate objects. Most important, children seem to be born with concepts of solidity, gravity and inertia. From an evolutionary perspective, intuitive physics makes sense. From the flight of a projectile to the impact of two stones against each other, an intuitive grasp of physics serves as cognitive bedrock for learned skills such as tool making and weapon use.

  While the Swiss Army knife story of the mind’s evolution is powerfully suggestive, it is likely not the whole story. Archaeologist Steven Mithen has argued that the “architecture” of the mind—its specific cognitive structure—had to evolve in specific ways to drive the Big Bang of consciousness. In particular, Mithen sees the ability to move information between modules as the innovation that led to the modern mind and the all-important capacity for culturally invented time. Moving information between modules allows for metaphor and analogy, which are the essence of human creativity. When information is shared between modules, a lump of clay that is roughly in the shape of a human form becomes the spirit of a departed ancestor, some coloured fluid splashed on a wall becomes a symbol for a bull felled in a fierce hunt, and markings engraved on a bone become a record of the moon’s phases.

  Mithen likens the developing mind to a building with different rooms, each housing a different cognitive module. The story of the mind’s evolution is a narrative of reworking its architecture. Only when the architectural plan of the human mind changed by removing walls between isolated modules could the rapid evolution of consciousness and culture begin. As Mithen puts it, “In the [modern] mental architecture thoughts and knowledge generated by specialized intelligence can now flow freely around the mind . . . when thoughts originating in different domains can engage together, the result is an almost limitless capacity for imagination.”23

  This new architecture of mind did not, of course, emerge on its own. The fact that evolution instilled in us an intuitive physics means that one cannot ignore the physical aspect of the developing mind. If, as Mithen imagines, channels are opened between modules to create culture, then there must also exist feedback loops where encounters with the world’s physical reality through culture amplify the opening of those channels. What we did with the “stuff” of the world that we found and shaped for our own uses—bone, wood and reed—changed what we could do and what we could imagine. The mind that would eventually come to imagine and organize time was a product of the looped interaction between the physical world it encountered, the physical culture it created and the symbolic culture it imagined linking the two.

  It begins with the reindeer bone in one hand and the flint in the other—the bone’s solidity in the palm, the rough feel of its edges on the fingers, the sharp bite of the flint’s point on the thumb. Then it rises in the mind to the realm of the symbolic—carved notches on the bone fragment become a representation for shared experience that can be shown to others in the tribe. The leap between physical object and cultural creation—the idea of the bone and its markings as a symbolic notation of time’s passage—closes the loop.

  What began millennia ago continues today: the circulation between a physical encounter with the world, the cultural forms engendered by that encounter and the shape of consciousness determining how we think and what we experience. The evolutionary modules with their hardwired understanding of physics were a starting point. But what happened in the Neolithic was a braided process flowing between the outside world and the interior response. We can call this poorly understood but essential connection between the physical world and cultural invention enigmatic entanglement. Through this enigmatic entanglement, a remarkable dialogue between mind and matter was begun—forever linking cosmic and human time together.

  CYCLES IN THE SKY: THE RAW MATERIAL OF TIME

  Human life is set against the natural rhythms of the sky. These celestial changes are the raw material of time. In the braided history of cosmological and cultural time there are four cycles most important to our development: the day, the month, the year and the periodic motion of planets.

  – The Day –

  The most fundamental astronomical period we experience is day’s journey into night and back again. Deeply imprinted in our biology as our circadian rhythms, the day/night, light/dark cycle sets the ebb and flow of our sleep and wakefulness.24

  Concerning the day, we must recognize one vital point in order for our social history of time to make sense: the day’s length varies. The sun spends more time above the horizon during the summer than it does during the winter. There is more daylight—more time to work—in summer than in winter. Thus, the natural experience of the day, and the unnatural attempts to slice it up into precise divisions, runs into a conflict: what is one to do with the difference between the length of a summer day and that of a winter day? This conflict would eventually pit the facts of astronomy against the needs of culture. Should the day’s divisions be of fixed length or should they expand and contract with the season? This question is of no small importance if, for example, you are a guildsman paid a wage that depends on accountings of the day’s length. As we shall see, the astronomical/cosmological recognition of the day as a by-product of a spinning Earth emerged during a long transition. It is no accident that this transition accompanied the increasing economic need for an accurately metered day.

  – The Month –

  The next cycle imposed upon us by nature is the motion of the moon. The lunar cycle has two distinct aspects: a variable position in the sky (where you see the moon relative to the sun each day) and changes in its appearance (its phase). The synodic month, as the astronomers call it, begins with the phase called the new moon, which occurs when the moon crosses the sun in the sky. The synodic month lasts approximately 29.5 days.25 Since the moon shines only with reflected sunlight, a new moon is a virtually invisible moon. But as the days pass, the moon moves eastward in its orbit (relative to the sun’s position at noon) and we see the moon’s transformation from the sickle-shaped waxing crescent phase to the familiar D of the first quarter moon and then on to the full moon, the third-quarter moon and finally the waning crescent.

  Next to the day, the cycle of lunar phases defining the month is our most obvious and visceral experience of celestial time. “Many moons” was the preferred means of time reckoning for hunter-gathering cultures. Most early cultures kept lunar rather than solar calendars. Thus it was the round of the moon’s phases repeating themselves after approximately twelve or so cycles that defined a year. The moon provides an easily recognized measure of time cycles short enough to count but long enough to measure durations stretching across many days. It is a great loss to us moderns, with our skies lit up by electric light, that we rarely notice the moon and its passage through a cycle of phases.

  – The Year –

  The yearly cycle of the sun—or seasons—is the longest repeating period imposed by the heavens that most people experience in a single life.

  Few of us are as intimate with the yearly changes in the sun’s position as we are with the daily solar turn of night into day. We may not pay close attention to those annual shifts, but we all feel the effect of the sun’s motion in the sky through the change of seasons. Everyone living in temperate climates knows the feeling of the sun beating down at noon on a summer’s day or of the feeble heat of the winter sun hanging low in the sky. Both experiences are unconscious measurements of the sun’s movement through the sky over the course of a year. On i
ts daily journey, the sun climbs higher into the sky during the summer than in winter. Here, “higher” means closer to directly overhead, a point astronomers call the zenith.

  The sun’s daily arc takes it from rising in the east to setting in the west. The changing height of the sun at noontime over the course of a year actually reflects a change in where it appears to rise and set on the horizon (though of course it is the Earth’s turning that creates this effect). Most of us are far too removed from the experience of the natural world to notice where on the horizon the sun rises and sets. Our ancestors, however, couldn’t help but notice. Beginning in the depths of winter they watched morning after morning—the sun rising progressively further north on the horizon as the days passed. Then in the middle of summer the steady northward march of solar risings (and settings) would stop and reverse itself. The sun’s rising begins moving further towards the south on the horizon line until it reached a southern extreme and repeated the cycle once again.

  The seasons, the length of day and the strength of the sun’s warmth are all tied to this yearly cycle. The year’s shortest day (December 21 in the northern hemisphere) occurs when the sun rises at its southernmost point on the horizon; this is the winter solstice. The longest day comes when the sun is at its northernmost rising, called the summer solstice (June 21 on our modern calendars). The spring and autumn equinoxes (March and September 21) mark days of equal length.

  The yearly cycle of long days turning to short days, warm months turning to cold months and growing seasons turning to seasons of decay has been the pulse of human life since we were hunter-gatherers. The direct connection between this lived, embodied experience of repeating celestial patterns made time and the sky intimate partners. But it was not only the sun that mattered; the stars themselves acted as the original cosmic metronome.